2021-06-21-论文笔记-Interpretable Hyperspectral Artificial IntelligenceWhen nonconvex: meets hyperspectral remote sensing
本文从高光谱图像恢复,降维,数据融合与增强,光谱解混,为大规模地表覆盖制图服务的多模学习技术(cross-modality learning)5个方面论述了非凸方法在高光谱智能解译中的应用。
0. 基本信息
- 引用信息
D. Hong et al., "Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing," in IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 2, pp. 52-87, June 2021, doi: 10.1109/MGRS.2021.3064051.
- bibtex
1 | @article{Hong2021, |
1. 研究背景
本文主要介绍了以下几方面:
- 高光谱图像恢复(restoration)
- 降维(dimensionnality reduction )
- 数据融合与增强
- 光谱解混
- 为大规模地表覆盖制图服务的多模学习技术(cross-modality learning)
高光谱存在广泛应用:As a result, HS RS has been significantly advanced and widely applied in many challenging tasks of Earth observa-tion [5], such as fine-grained land cover classification, min-eral mapping, water-quality assessment, precision farming, urban planning and monitoring, disaster management and prediction, and concealed-target detection
高光谱3D数据立方体相对于1D和2D数据的优势:
- 1D:有更多的语音和结构信息可以辅助区分
- 2D:有更精细的光谱信息,更好的区分材料的细小差异,可以分辨十分详细的材料,进行理化参数的定量反演,食品安全保护等
高光谱遥感任务(卫星):
- MODIS
- Hyperspectral Satallite for Earch Observation(HypSEO)
- German Aerospace Center Earth Sensing Imaging Spectrometer (DESIS)
- Gaofen-5
- EnMap
- HyspIRI
在大数据时代,以专家为系统核心的数据处理流程存在绝大的瓶颈,无法满足需求(With the ever-growing availability of RS data sources from both satellite and airborne sensors on a large and even global scale, expert system-centric data processing and the analysis mode have run into bottlenecks and cannot meet the demands of the big data era)